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A new porous condition has been implemented in the PAB3D solver for simulating the 

flow over porous surfaces. The newly-added boundary condition is utilized to compute the 

flow field of a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities 

for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit 

area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. The flow fields for a 

baseline nozzle (no porosity) and for a nozzle with porous surfaces (10% porosity ratio) are 

computed for NPR varying from 2.01 to 9.54. Computational model results indicate that the 

over-expanded nozzle flow is dominated by shock-induced boundary-layer separation. 

Porous configurations are capable of controlling off-design separation in the nozzle by 

encouraging stable separation of the exhaust flow. Computational simulation results, wall 

centerline pressure, mach contours, and thrust efficiency ratio are presented and discussed.  

Computed results are in excellent agreement with experimental data. 

Nomenclature 

A  = nozzle area, in. 2 

F  = axial thrust, lb 

NPR=Nozzle pressure ratio 

M  = Mach number 

P  = pressure, psi 

T  = temperature, °R 

x  = nozzle streamwise coordinate, in. 

y  = streamwise normal (vertical) coordinate, in. 

y+  =grid first cell height 
Subscripts 

a  = ambient 

e  = nozzle exit 

i  = ideal 

t  = nozzle throat 

oj  = nozzle stagnation condition 
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Introduction 

Investigations in the area of Passive Porosity Technology (1-9) for propulsion applications have led to an increased 

interest in upgrading PAB3D’s (10) modeling capabilities. PAB3D is a structured, multi-block, parallel, implicit, 

finite-volume solver of the three-dimensional, unsteady, Reynolds-Averaged Navier-Stokes equations. Advanced 

turbulence models are available in PAB3D and are widely used in internal and external flow applications by NASA 

and the U.S. aerospace industry. In PAB3D, second-order time accuracy can be achieved by employing physical 

time sub-iteration and dual time sub-iteration (13). In an attempt to increase the fidelity and flexibility of PAB3D, a 

new boundary condition for simulation of the flow over porous surfaces has been added. Porous boundary simulates 

a porous surface placed above a plenum. The model eliminates the need for construction of a grid within an 

underlying plenum, thereby simplifying the numerical modeling of passive porous control systems (8,9). 

 Hunter (1,3) performed an experimental investigation on a non-axisymmetric, convergent-divergent nozzle 

incorporating porous cavities for shock-boundary layer interaction control. The experimental testing on the nozzle 

was performed in the model preparations area of the 16-foot Transonic Tunnel Complex at NASA Langley Research 

Center (LaRC) as part of a comprehensive static performance investigation. Force, moment, and pressure 

measurements were made and Schlieren flow visualization was obtained for a subscale, non-axisymmetric, two-

dimensional, convergent-divergent nozzle. Details of the nozzle are shown in Figure 1, and a photograph of the 

nozzle is shown in Figure 2. Results by Hunter (5) indicate that over-expanded nozzle flow was dominated by 

shock-induced boundary-layer separation, which was divided into two distinct flow regimes: three-dimensional 

separation with partial reattachment, and fully detached two-dimensional separation.  For nozzle pressure ratio, NPR 

1.8-2, the separation was three-dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment 

over the nozzle flap). For NPR!2.0, separation was steady and fully detached, and it became more two-dimensional 

as NPR increased. When NPR increased from 1.8 to 2.0, the nozzle went through a dramatic transition, dividing the 

two separated flow regimes.  Figure 3 shows schematic of a flow in a shock-separated nozzle.  

With the implementation of the new porous boundary condition in PAB3D, a detailed numerical investigation of 

the nozzle can be conducted, and numerical results can be compared to experimental data. In the present study, a 

two-dimensional computational model is used to compute the flow of the over-expanded nozzle for NPR > 2.0. In a 

parallel effort, a three-dimensional model is being constructed to compute flow for NPR ! 2.0. This study is a 

continuation of the work of Hunter (4,5), and will serve as the validation case for the implementation of the porous 

surface boundary condition. 

The objective of this study is to implement, validate and examine the newly-added porous boundary condition of 

PAB3D, and to computationally determine the internal performance (nozzle thrust ratio) of a fixed geometry exhaust 

nozzle incorporating porous cavities for shock boundary layer interaction control for NPR > 2.0.  

The organization of this paper will be as follows: The governing equations and boundary conditions are 

presented followed by a detailed computational study of a convergent-divergent nozzle incorporating porous 

cavities.  Numerical results for both a baseline configuration and porous configurations are presented, discussed and 

compared to experimental data (3). Physical phenomena of passive porous control are highlighted, and flow 

characteristics are described.  

Computational Fluid Dynamics Simulation 

In this study, PAB3D is used in conjunction with two-equation k-" turbulence closure and nonlinear algebraic 

Reynolds stress models to simulate separated nozzle flows. PAB3D has been well-tested and documented for the 

simulation of aero-propulsive and aerodynamic flows involving separation, mixing, and other complicated 

phenomena (10-13). PAB3D is ported to a number of platforms, and offers a combination of good performance and 

low memory requirements. In addition to its advanced preprocessor, which can handle complex geometries through 

multi-block general patching, PAB3D has a runtime module capable of calculating aerodynamic performance on the 

fly and a postprocessor used for follow-on data analysis (14). PAB3D solves the simplified Reynolds-averaged 

Navier-Stokes equations in conservative form, obtained by neglecting stream-wise derivatives of the viscous terms. 

Viscous models include coupled and uncoupled simplified Navier-Stokes and thin layer Navier-Stokes options. 

Roe's upwind scheme is used to evaluate the explicit part of the governing equations, and van Leer's scheme is used 

for the implicit part. Diffusion terms are centrally differenced, inviscid terms are upwind differenced, and two finite 

volume flux-splitting schemes are used to construct the convective flux terms. PAB3D is third-order accurate in 

space and second-order accurate in time. 
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Governing Equations 

The governing equations solved in this study are the time-averaged Reynolds Averaged Navier-Stokes (RANS), 

and the perfect gas law is chosen to represent the air properties. The full equations are listed in reference (12). Three 

turbulence models are used in the current study to model turbulence: a standard k-" model (11), and two algebraic 

stress models: Shih-Zhu-Lumley (SZL) (16), and Girimaji model (16). The two algebraic stress models give 

inherently better results than the linear stress model because of the explicit modeling of effects such as relaxation, 

and the specific inclusion of nonlinear anisotropic effects from the mean flow strain and vorticity. With a nonlinear 

model, the calculation of six independent, realizable Reynolds stress terms is possible. This type of detail is 

important for simulating complicated multidimensional flows. A compilation of the parameters used in the 

turbulence models can be found in reference (12). 

Computational Domain  

 The computational grid used in this study consisted of 66,400 cells and 5 blocks. Relative to the nozzle exit, the 

grid extended approximately 30 throat heights downstream, 25 throat heights upstream, and 25 throat heights normal 

to the jet axis. In an attempt to capture the complicated physics of the shock-boundary layer interaction process, the 

divergent section of the nozzle was densely gridded with cells having an aspect ratio near 1:1.  There were 

approximately 40 cells in the boundary layer grid with first cell height of approximately y+=0.5. An inflow duct 

(sized like the instrumentation duct used in the experimental study) was located upstream of the nozzle. 

Initial and Boundary Conditions 

Stagnation conditions were applied to the left face of the inflow duct upstream of the nozzle, and were chosen to 

match experimental conditions for total pressure and temperature (3). In addition, an initial Mach number was 

specified in the inflow block and nozzle to start the solution. The static ambient region surrounding the nozzle was 

defined by a subsonic inflow condition (Ta=530°R, Pa=14.85psi, Ma=0.025) on the left face, a characteristic 

boundary condition on the top face, and a smart boundary condition on the right face that switched between constant 

pressure outflow (subsonic) and first order extrapolation (supersonic), depending on the local Mach number. All 

solid walls were treated as no-slip adiabatic surfaces, and the bottom of the entire domain was defined by a 

symmetry boundary condition.  A porous boundary condition was specified for the porous surface and porous 

cavity. Porous boundary simulates a porous surface placed above a plenum. The model eliminates the need for 

construction of a grid within an underlying plenum, thereby simplifying the numerical modeling of passively porous 

flow control systems, and reduces computation cost. A sketch showing the porous cavity concept for shock-

boundary layer interaction control is shown in Figure 4.  The Porous patch allows the high-pressure region behind 

the shock to communicate with the low-pressure region ahead of the shock, which reduces shock strength and 

consequently reduces adverse effects of shock on the boundary layer separation. The proposed porous surface 

boundary implemented into PAB3D builds on the work of Ref. (8, 9). This model was built on a methodology first 

developed by McDonnell Douglas to simulate normal flow through a screen positioned at a zonal-grid interface 

boundary (18). Tinetti (8) reformulated that approach into a new boundary condition for simulation of the flow over 

porous aerodynamic surfaces. Reference (8) gave a complete description of the development of this boundary 

condition. In the present implementation of the porous boundary condition, plenum pressure that yields a zero net 

mass flux balance across the porous patch is computed.  The normal velocity is used to determine the flow direction 

rather than the plenum pressure as suggested in Ref (9). This modification to the original porous boundary was 

found to enhance convergence.  

In the experimental study of Ref (3), one baseline (no porosity) and 27 porous configurations were tested. The 

variation in the porosity percentage (10%, 20%, and 30%), hole diameter d (0.025 in., 0.052 in., and 0.076 in.), and 

cavity depth D (shallow, medium, and deep) resulted in 27 nozzle configurations. One limitation of the current 

porous boundary condition is the fact that it models only porosity ratio and is insensitive to the hole diameter and the 

cavity depth. Thus the present porous boundary condition simulates experimental nozzle configurations with the 

smallest hole diameter and cavity depth. 

Results  

An assessment of the new porous boundary condition was made by solving the flow in a non-axisymmetric, 

convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. 

Computational simulations were performed at nozzle pressure ratios from 2.01 to 9.5 for a baseline configuration 

(no porosity) and for a nozzle with 10% porosity ratio. These conditions were chosen for detailed comparison with 

experimental data (3). Numerical results are presented in terms of internal flow features (static pressure, thrust 
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performance, mach contours and Schlieren flow visualization). Grid sequencing is used to accelerate convergence 

by solving 1/4 then 1/2 of the grid in each of the three computational directions. Each of the 2D simulations 

performed in this study ran 5,000 iterations at each grid level.  

Prior to conducting the detailed computational analysis of the non-axisymmetric nozzle flow, test cases were run 

for NPR=3.0 in order to assess PAB3D performance. This includes monitoring net mass flow through the porous 

patch, grid convergence and the performance of various turbulent models, using experimental centerline pressure 

data as the criterion. At this NPR, experimental results showed shock-boundary layer interaction, and pressure data 

indicated that nozzle flow was nearly 2D. Figure 5 shows the net mass flux across a porous patch approached zero in 

less than 1000 iterations.  Figure 6 shows the convergence history for the baseline configuration at NPR=3.0. In the 

present study, grid convergence comparisons were performed. The coarse grid (444) represents every 4
th

 grid point. 

The medium grid (222) represents every other grid point of the fine grid. Figure 7 shows the computed wall static 

pressure (P/Poj) for all grid levels, versus non-dimensional stream-wise location. The coarse grid level failed to 

capture the shock accurately while medium and fine grid levels were in excellent agreement with experimental data 

of Ref. (3). This demonstrates numerical verification for PAB3D with respect to grid distribution. 

Figure 8 shows a comparison of computational and wall centerline experimental pressures over the entire nozzle 

length at NPR=3.0 for all three turbulence models used in this study. All three models showed excellent agreement 

with experimental pressures upstream and immediately downstream of the nozzle throat. Further downstream, all 

three models appeared to model the shock-boundary layer interaction well with SZL, giving the best comparison 

with experimental data (3). CFD results shown hereafter will be for the SZL model.  

Baseline Configuration (No Porosity) 

Figure 9 shows comparison between the computed and experimental wall centerline static pressures (P/Poj), plotted 

against non-dimensional stream-wise location for the baseline nozzle configuration at off-design nozzle conditions 

for NPR ! 5.423. CFD results are shown as the solid lines, while symbols represent experimental data of Ref. (3). 

Experimental and computational Schlieren flow visualization are shown in Figure 10 while Mach Contours for 

nozzle flow are presented in  

Figure 11. Results are representative of classic convergent-divergent nozzle flow. Schlieren flow visualization at 

NPR=2.0 shows the nozzle shock with a pronounced lambda foot system and fully detached separation extending 

from the leading lambda shock downstream past the nozzle exit. Fully detached separation occurred for subsequent 

NPRs above 2.0. Increasing NPR forced lambda shock to increase in size and move downstream. By NPR=3.4, the 

lambda shock foot had grown significantly, such that the main shock and trailing lambda foot were outside the 

physical nozzle, as shown in Figure 10.  At this NPR, flow past the separation point showed strong resemblance to 

externally over-expanded flow; the jet plume necked down between the leading and trailing lambda foot, and there 

was an expansion fan emanating from each trailing lambda foot as it intersected the free shear layer. Figure 10 

shows a good qualitative agreement between computational and experimental Schlieren images, though the 

computational simulation is seen to predict more of a “stretched” shock structure. With increasing NPR, the leading 

lambda foot worked its way out of the nozzle, and pressure data and flow visualization show the nozzle to be 

internally shock-free. Figure 12 shows excellent agreement between computational and experimental wall centerline 

pressure data for NPR ! 5.4 and shows the nozzle to be shock-free and all pressures situated on the same curve.  

The internal flow discrepancies noted between computed results and experimental data at NPR=2.0 are due to 

the 2D nature of the computational simulation, and the fact that the flow has not yet recovered from the three- 

dimensional flow region. The fact that the flow began to take on a 2D nature at around NPR=2.21, where 

computation and experiments begin to agree, indicates that a 3D simulation is necessary to correctly model nozzle 

flow at low NPRs. 

Porous Configurations 

Computational simulations were performed at nozzle pressure ratios from 2.01 to 9.5. Figure 13 shows 

comparison between the computed and experimental wall centerline static pressures (P/Poj), plotted against non-

dimensional stream-wise location, for a nozzle configuration with a 10% porosity patch at off-design nozzle 

conditions for 2.0 <NPR ! 5.423.  Computed results agree well with experimental data (3). The porous patch 

affected static pressure ratio distributions in the nozzle across the entire operating range compared to baseline 

configuration. The nozzle shock is located over the porous region for NPRs between 2.01 and 3.82. Figure 14 shows 

mach contours for NPR=2.41, for nozzle flow with and without porosity at NPR=2.41. Comparison of computed 

wall pressure distribution for baseline configuration and a 10% porous patch configuration, for NPR=2.4 and 3.01, 

are shown in Figure 15. Computed schlieren images for the 10% porosity configuration are shown in Figure 16. At 

NPR=3.41, where the shock location had moved to the very downstream end of the porous patch, porosity provided 
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little apparent separation control and the only significant difference in the static p ressure ratio distributions between 

the porous configuration and the baseline configuration is a more gradual compression through the shock for the 

porous configuration. 

Performance 

Figure 17 shows the computed thrust ratio F/Fi plotted against NPR, accompanied by experimental data of (3), 

for the baseline configuration and the porous configuration. Peak Thrust ratio for porous configurations was lower 

than that of the baseline configuration. The computational simulation did a good job of modeling the overall thrust 

efficiency trend but failed to predict the on-design thrust efficiency. This is to be expected since the 2D 

computational model does not account for viscous effects on the nozzle sidewalls.  

Summary and Future Work 

A new porous boundary condition, for simulating the flow over porous surfaces, has been successfully added to 

PAB3D. The porous boundary condition reduces computation cost and simplifies the numerical modeling of passive 

porous surfaces. The porous boundary condition was utilized to compute the flow field of a non-axisymmetric, 

convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. Numerical 

results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-

layer separation at over-expanded conditions, and that porous configurations were capable of controlling off-design 

separation in the nozzle by encouraging stable separation of the exhaust flow.  Computational results are in excellent 

agreement with experimental data for NPRs greater than 2.0. Future work will involve building a 3D computational 

model to accurately model lower NPR, and to study nozzle separation in general.  
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Figure 1.  Sketch showing nozzle geometric details, Ref. (3) 

 

 

 
 

Figure 2.  Non-axisymmetric convergent divergent nozzle, Ref. (5) 

 

 

 

 
Figure 3.  Schematic of over-expanded nozzle with separation. 
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Figure 4.  Sketch showing the porous cavity concept for shock-boundary layer interaction control, Ref (3) 

 

 

 

 
 

Figure 5.  Net mass flux across porous patch. 
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Figure 6.  Convergence history for 2D nozzle flow at NPR  3.01 

 

 

 

 
 

Figure 7  Comparison of computational pressure data at different grid levels  

for NPR = 3.0 with experimental data of Ref. (3) 
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Figure 8.  Comparison of computational and wall centerline experimental pressures  

over the entire nozzle length at NPR=3.0 

 

 

 
 

Figure 9.  Comparison of computed pressure data, lines, and experimental data, symbols, of Ref. (3). 
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Figure 10.  Comparisons of experimental and computational Schlieren images  

for baseline nozzle configuration 
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Figure 11.  Mach contours for baseline configuration at various NPRs 
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Figure 12.  Comparison of computed, lines, and experimental wall centerline pressure data of Ref. (3), 

symbols, for NPR ! 5.4 
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Figure 13.  Comparison of computed, lines, and experimental pressure data of Ref. (3), for nozzle 

configuration with 10 % porosity patch.  

 

 

  

 
(A) Baseline Configuration (B) 10% Porosity 

 

 

Figure 14.  Contours of nozzle Mach number at NPR=2.41 
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(a)  NPR=2.41 

 
 

(b) NPR=3.01 

 

Figure 15.  Comparison of internal static pressure ratio distributions for baseline configuration 

 and porous configuration at nominal NPR =2.41 & NPR =3.0 
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Figure 16.  Computational schliern images for nozzle flow with 10% porosity ratio 
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Figure 17. Comparison of nozzle thrust efficiency for baseline configuration and  

porous configuration. 
 


